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Abstract. A method of determining the inhomogeneity of the orientation distribution of
crystallites is presented, It makes use of the fact that the reflection pole figures measured by
x-ray or neutron diffraction contain information from the whole volume penetrated by the
radiation. This allows one to calculate the texture function at different depths in the sample.
The results of the calculation tests are given.

1. Introduction

The inhomogeneity of crystallites orientation distribution (texture) in polycrystalline
materials is a rule rather than an exception. Frequently it is assumed that it is weak
enough to be neglected. Often some restrictions on the deformation process are imposed
to minimize texture inhomogeneity.

What we are interested in is the case of a flat sample with its texture changing with
depth. The usual way of investigating such an inhomogeneity is by cutting off thin layers
(thinning the specimen) repeatedly, measuring the x-ray reflection pole figures and
calculating texture function in each step. This method is not only destructive but also
cumbersome (see, ¢.g., Bauer et al 1977).

The method described below is based on the fact that reflection pole figures measured
by x-ray or neutron diffraction contain information from several layers of the material.
The influence of a given layer on the pole figure shape depends on the layer depth.
Knowing this dependence quantitatively, one can attempt to calculate from a given set
of pole figures not only one (as usnally) but two or even more texture functions describing
the textuses of layers (Morawiec 1990).

It is clear that such a method will be restricted by the fact that the penetration depth
is determined by the radiation used. X-rays penetrate only a very thin layer; thus only
surface texture can be separated from the interior texture. When based on the neutron
pole figure measurements, because of the high penetration depth, inhomogeneities of
thick layers can be analysed. If necessary, the neutron penetration can be limited using
anon-permeable mask (Choi et af 1979).

The difficulties with the standard (i.e. only one) texture function reproduction are
the source of doubts about the possibility of getting two or more texture functions from
the same set of pole figures. However, the results of tests on models show that from the
viewpoint of calculations such a procedure in most cases is admissible.
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2. Pole figures in terms of the texture function

For the orientation distribution reproduction from pole figures in the case of an inhomo-
geneous sample it is necessary to know the equation expressing the pole figures by the
texture functions in the layers.

Let the function (-, x):50(3) — R, describe the orientation distribution in a layer
situated at a depth between x and x + dx, The intensity of the reflection with the
scattering vector & and y as its direction in the sample coordinate system is given by

h
no)=atn) [ wptiyn | dgFenthzg) b= ®
0 s0(3)

where x equals T for the deepest reflecting level and g(k, y) is the coefficient taking
into account all intensity corrections not considered explicitly (e.g. defocalization,
reflectivity of reflection k). Moreover, p(h, y, x) := s(k, y, x)r(h, y, x) where s(h, y, x) is
the x-deep surface area from which the radiation can be counted and r(k, y, x) describes
the influence of absorption in the material:

r(,y,x) := 34 (I(h, ¥, x))/94(0) @

with $,(7) being the intensity of radiation after a path of length / in the material.

For a homogeneous sample with a random orientation distribution (F(g, x) = 1 for
all g € so(3) and x € [0, T}]) the last integral in equation (1) equals 4. Hence, the A
pole figure P, o< I, /172%™ is given by the expression

r -1 ot
Py ([ axplh, 9) [ aplhrn | dFE0see). ®)
0 0 so(3)
This is the generalized form of the so-called fundamental equation. It takes the
standard form

P | def(e)oth = g) @
50(3)
when the material is homogeneous (i.e. F(g, x)) = f(g)).
In the case of an inhomogeneous sample the problem to be solved is to calculate the
x-dependent texture function F. The basis for this is equation (3). For a given set of pole
figures it represents the system of integral equations.

3, Texture function reproduction

Asisknown, evenin the simplest case of a homogeneous sample the solution of equation
(4) is ambiguous. If the texture function f is expanded into a series of generalized
spherical harmonics (Fourier series on the rotation group), then the odd part of the
series has no influence on the pole figures’ shape and therefore can be arbitrarily chosen.
On the other hand, the range of the possible solutions is bounded by the non-negativity
of the texture function. This formal condition as well as others of physical character
allow one in most cases to obtain solutions which can be considered as satisfying equation
(4) and the assumed conditions. However, in the case of depth-dependent textures, the
information contained in a few pole figures may be too poor to give a satisfactory solution
in all its generality, but it can be adequate if additional assumptions are imposed.
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To simplify the problem let us assume that the x-dependent texture function can be
treated as a superposition of N functions f* : s0(3) — R,:

F(g,x) < 21 £ (g). (5)

It is assumed that physical reasons allows one to deduce the form of the & : R, = R,
functions and that each of f*has the properties of a texture function, i.¢. it fulfilsadequate
symmetry conditions.

It should be mentioned here that the symmetry of an inhomogeneous sample cannot
be higher than its symmetry when inhomogeneity is neglected. Only the symmetry
elements with the rotation axis perpendicular to the plane of constant x cannot be
disturbed by inhomogeneity in depth. However, if the layers are considered as homo-
geneous, the sample symmetry of the texture functions f can be higher than the real
symmetry of the whole sample.

Equation (3) can now be rewritten as

N
P.0)< 2 pilhy) | defie)oth = a) ©

s0(3)

with
pithy)i= ([ aspy0) [ dspthn, 000, Q

Thus the problem differs from the standard one (equation (4)) in the number of
texture functions to be reproduced.

The principal ambiguity analogous to that of the standard problem occurs also here,
i.e. the odd parts of Fourier series of f functions do not influence the pole figures, but
no other additional ambiguity of a principal character (i.e. occurring for arbitrary pole
figures and arbitrary texture functions) does appear. To prove this it is enough to note
that from equation (6) it follows that

N :
Py(y) = 2 pi(k, Y)P () (8)

where P}, is the pole figure corresponding to the f* texture function. If the set of N pole
figures of the same type but measured with different Bragg angles, i.e. different p;
coefficients (e.g. {200}, {400}, for cubic crystal symmetry) is known, then equation (8)
can be considered as a system of V algebraic linear equations for the values of N P, pole
figures. Thus the generalized problem can be reduced to the standard one if only the
system (8) has an unambiguous solution. This method was applied by Choi et al (1979)
to the determination of pole figures corresponding to different layers in the sample.
However, it is restricted by the difficulties with the measuzement of many different pole
figures of the same type.

In most of the lately developed methods of solving the standard problem, it is
assumed that pole figures and texture functions are piecewise constant and equation (4)
is reduced to a system of algebraic linear equations. Besides the principal ambiguity
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Figure t. Model texture functions: {g) function f* describing the surface texture; (b) function
f? describing the interior texture,

there may appear another ambiguity resulting from the small number of equations. The
non-negativity condition improves the situation, but it makes the problem non-linear
and difficult to analyse; therefore, to check the efficiency of the reproduction methods,
model calculations are necessary. They show that the results are different in individual
cases but sometimes one can obtain a satisfactory solution even from one pole figure
(see, e.g., Ruer and Baro 1977, Matthies 1990).

When equation (6) is treated in a similar way, the number of unknowns increases N
times and there are doubts about whether a satisfactory solution can be obtained even
for N = 2. However, in spite of this doubt an appropriate routine has been prepared. In
fact, it is a modification of the program solving the standard problem and this in turn is
similar to the methods described, for exampie, by Imhof (1983), Pawlik (1986) and Ruer
and Baro (1977). Virtually the routine iteratively solves the system of linear equations
built on the basis of equation (6).

4. Tests

The results of some model tests are given below. These tests were carried out ona chosen
exemplary texture. It should be emphasized that some graphs can have an individual
character, i.e. they can have different shapes for other textures.

The example was chosen to satisfy the most frequently analysed symmetry
conditions, i.e. cubic crystal symmetry and orthorhombic symmetry of the layers, and
the considered texture functions are well known.

The used coordinates on s0(3) were Euler angles defined according to Bunge (1982).
Calculations were carried out with texture functions and pole figures given at grid of 5°
mesh size.
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Figure 2. Model pole figures: (a) pole figures corresponding to f! texture function, obtained
using equation (4); (b) pole figures corresponding to f* texture function, obtained using
equation (4); (c) pole figures treated as experimental, obtained on the basis of equation {(8)
following from equation (6).

Except for the non-negativity of the texture function the routine does not contain
any other explicitly formulated conditions. Therefore, when using the program, one
should be aware of the ambiguity problem.

In the model the assumed texture changes violently at the depth x = &{; above and
below this level the textures are homogeneous. Equation (5} takes the form

F(g, x) = Hx)H(sl — x)f 1(g) + Hlx ~ A)f*(g) )

where H denotes Heaviside’s function, The assumed value of s is f,=1.3 x 105 m.
The functions f! and f2 are taken from the work of Truszkowski et af (1979). Each
is built of three Gaussian-shaped components (see, e.g., Matthies et al 1987). The
components and their volume fractions are as follows:

FL00134110) — 0,46 {111}Q10)-0.33  {111}{112) - 0.21
F{1100(112) - 0.18  {213}(364) — 0.58  {112}(111) - 0.24
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Figure 3. Texture functions reproduced from pole figures shown in figure 2(c) (after 300
iterations).
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Figure 4. Texture functions reproduced from pole figures corresponding to function f2
(see figure 2(b)). Comparison with figure 1(&) shows that the method works in case of
homogeneous samples. The number of iterations was 300,
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All the components (except the test with the results given in figure 5) have the same haif-
width 0of 21.6°. The assumed material is copper and the assumed radiation is x-ray copper
K.. The corresponding absorption coefficient is ¢ = 4.7219 x 10° m~* and the Bragg
angles related to the {111}, {100}, {110} and {311} pole figures are 21.67°, 25.24°, 37.09°
and 45.00°, respectively. The function s is assumed to be x independent; so it does not
influence the p' coefficients. The r-function is defined as r(k, y, x) = exp[— ul(h, y, x))
with

Ik, y, x) = 2x/{sin[ (k)] cos[a(y)]} (10)

. where & is the Bragg angle and « is the radial angle on a pole figure. Except for the
explicitly indicated cases, three pole figures ({111}, {100} and {110} with a € [0°, 80°]
were used.

The idea of the tests is very simple: one considers a given texture (with known texture
function) as the really existing texture (figure 1) and then calculates the corresponding
pole figures (figure 2). These pole figures are treated as experimental and are the basis
for the texture function reproduction. The result can be compared with the assumed
texture functions (figures 3 and 4).

Further, the quality of the reproduced texture functions f, ! and f? is characterized
by D:=[diff(f!,f}) + diff(f2,f2)}/2 with diff(f*, f1) := (8n2)! [0 dg lfi(g) —
Fi(2)]- This index does not give information on the details but it does show the global
difference between the desired ‘real’ texture and the calculated texture.

In practice, when model texture functions are unknown, the only known quantity
characterizing the quality of the texture functions under reproduction is that which
describes the differences between the experimental pole figures and the pole figures
calculated from these texture functions. A few different quantities of this type are being
used. Here the average difference d between the experimental and the calculated pole
figures at one measuring point is applied.

It is known that in the standard case the sharpness of the texture affects the quality
of the reproduction results. To check this in the generalized case a test was carried out
with nine different (but the same for all components) half-widths. As figure 5 shows, the
curve has its maximum near the 21.6° point assumed in other tests. The reproduction
results for sharper and for flatter textures are better.

Figures 6 and 7 visualize the course of the iteration process. For comparison, anal-
* ogous curves for one texture function reproduction are shown. The latter have a larger
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Figure 6. The adjustment of calculated and model
pole figures versus number of iterations: (a) case
of an inhomogencous sample: (b) standard case
based on equation (4), where the curve represents
the arithmetic average for calculations repro-
ducing independently the texture functions /' and
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Figure 8. The results of reproduction from one
({111}), two ({111} and {100}), three ({111}, {100}
and {110}) and four ({111}, {100}, {110} and {311})
pole figures after 300 iterations. The ranges of
pole figures were 45° and 80°,
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Figure 7. Difference between model and repro-
duced texture functions versus number of iter-
ations: (a) case of an inhomogeneous sample; {b)
curve calculated for functions f* and 2 yunder sep-
arate reproduction according to equation (4).
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Figure 9. I versus the range of pole figures after
50 iterations.

slope and therefore the program separating the textures requires a larger number of
iterations to achieve results of comparable quality.

The dependence of D on the amount of information is shown in figures 8 and 9. As
should be expected, the range of pole figures used strongly influences the quality of the
results. This follows from the presence of & in equation (10).

The results for different numbers of pole figures are given in figure 9. The fact that
for the established range of 80° the convergence for three pole figures is better than for
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Figure 10. (2) Pole figure adjustment versus s,/sd;, where s = 1.3 pm corresponds to
model textures (9}, and & = s, was assumed during reproduction. () d versus parameter
@A of equation (11) for the model texture built according to equation (9) with o = &, =
1.3 um, and equation {11} assumed during reproduction. {(¢) Pole figure adjustment versus
R, /By, where By = 0.5 um ™! corresponds to model textures (11), and & = B, was assumed
during reproduction. (&) d versus parameter s¢ of equation (9) for the model texture built
according to equation (11) with ® = %= 0.5pm™", and equation (9) assumed during
reproduction,

four indicates that the fourth pole figure does not add much more information than
already obtained from the three others.

In practice, contrary to the model calculations, the functions &; (describing texture
changes with x) will usually be unknown. The question arises of whether from the course
of the reproduction process one can guess how texture depends on depth or at least what
is the value of the parameters of & functions (4 in equation (9)). In other words, if the
convergence of iteration (as shown by d versus the number of iterations) is the best when
the &-functions used for reproduction are identical with the real functions, i.e. those
corresponding to the sample. The results of appropriate tests are given in figure 10{a).
The minimum of the curve appears near the ‘real’ value of the parameter s{ only after a
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Figure 11. The influence of errors on the adjust- Figure 12. The influence of errors on the cal-
ment of model and calculated pole figures. culated texture functions.

very large number of iterations. This in turn, as will be shown, is limited because of
expenimental errors. Therefore, the possibility of guessing the value of & is bounded.

The situation is even worse. Let the model be constructed using equation (9), but
when reproducing texture functions let us assume that

F(g, x) = exp(—@&x)f(g) + [1 — exp(—Bx)]f*(g). (1)

The results (D versus R} for different iteration numbers are shown in figure 10. Here
the convergence was better when the reproduction was carried out with the ‘true’ formula
(9) {figure 10(2)) than in case of equation (11) (figure 10(b)). However, unfortunately
this is not the case when the role of (9) and (11) are interchanged; the convergence of
calculations with an assumed ‘untrue’ function given by (9) (figure 10(d)) is better than
with the proper function given by (11) (figure 10(c)).

All the above tests were carried out using error-free model pole figures. The
measured pole figures are within the experimental errors. The question is how the errors
influence the reproduction results?

The discussed separation method is based on the incompatibility of pole figures, The
pole figures are considered to be compatible if there exists a texture function from which
they all can be obtained following equation (4). The limit of the value of d for a large
number of iterationsis some measure of the incompatibility. Itis near zero forcompatible
pole figures and takes higher values for incompatible pole figures. From a formal
viewpoint, incompatibility is equivalent to discrepancy in the system of linear equations
which are being solved. On the other hand, the same effect of incompatibility is produced
by pole figure errors. Thus the separation method could be error sensitive.

To check this sensitivity, the model pole figures were disturbed in such a way that
relative errors had a normal distribution and the error (mean for established «) depended
on the radial angle of the pole figure (proportional to 1 + 2 x 1073 tan «). The changes
in d and D versus the mean relative error at one ‘measurement’ point of the pole figure
are shown in figures 11 and 12.

When the value of error is high, the increase in the number of iterations does not
cause a decrease in D, i.e. does not improve the quality of results. However, even in
such a case, although the details are missing, the main maxima can be properly localized.
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5. Final remarks

The main advantage of the method presented is that it is much easiet to apply than the
traditional technique of thinning, It is important also that this is 2 non-destructive
method.

It can be applied to inhomogeneities of different scales; one can investigate thin
layers using x-rays or thick samples by nevtron diffraction.

A serious limitation is due to the difficulties connected with the determination of the

-functions. For a small number of iterations it is impossible to draw conclusions about

their form from the course of the iteration process. On the other hand, because of
experimental errors it is not reasonable to increase the number of iterations above a
certain limtit.
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