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Abstrnd A method of determining the inhomogeneity of the orientation distribution of 
aystallitesispresented.ItmakesuseofthefaathatthereAectionpolefiguFesmeasuRd by 
x-ray or neutron diffraction contain information from the whole volume penetrated by the 
radiation. ThisaUowsoue todculatethe texturefunctionatdiffercntdepthsin thesample. 
The results of the calculation tests are given. 

1. Introduction 

The inhomogeneity of crystalks orientation distribution (texture) in polycrystalline 
materials is a rule rather than an exception. Frequently it is assumed that it is weak 
enough to be neglected. Often some restrictionson the deformation process are imposed 
to minimii texture inhomogeneity. 

What we are interested in is the case of a flat sample with its texture changing with 
depth. The usual way of investigating such an inhomogeneity is by cutting off thin layers 
(thinning the specimen) repeatedly, measuring the x-ray reflection pole figures and 
calculating texture function in each step. This method is not only destructive but also 
cumbersome (see, e.g., Bauer eta1 1977). 

The method described below is based on the fact that reflection pole figures measured 
by x-ray or neutron diffraction contain information from several layers of the material. 
The influence of a given layer on the pole figure shape depends on the layer depth. 
Knowing this dependence quantitatively, one can attempt to calculate from a given set 
ofpolefiguresnotonlyone (asusually) but twoorevenmoretexturefunctionsdescribing 
the textures of layers (Morawiec 1990). 

It is clear that such a method will be restricted by the fact that the penetration depth 
is determined by the radiation used. X-rays penetrate only a very thin layer; thus only 
surface texture can be separated from the interior texture. When based on the neutron 
pole figure measurements, because of the high penetration depth, inhomogeneities of 
thick layers can be analysed. If necessary, the neutron penetration can be limited using 
a non-permeable mask (Choi e t d  1979). 

The difficulties with the standard (i.e. only one) texture function reproduction are 
the source of doubts about the possibility of getting two or more texture functions from 
the same set of pole figures. However, the results of tests on models show that from the 
viewpoint of calculations such a procedure in most cases is admissible. 
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2. Pole figures in terms of the texture function 

For the orientation distribution reproduction from pole figures in the case of an inhomo- 
geneous sample it is necessary to know the equation expressing the pole figures by the 
texture functions in the layers. 

Let the function F(.  , x )  : so(3) + W, describe the orientation distribution in a layer 
situated at a depth between x and x + dx. The intensity of the reflection with the 
scattering vector h and y as its direction in the sample coordinate system is given by 

where x equals T for the deepest resecting level and q(h,y) is the coefficient taking 
into account all intensity corrections not considered explicitly (e.g. defocalization, 
reEectivity of reflectionh). Moreover,p(h, y, x )  := s(h, y, x)r(h, y, x) where& y, x) is 
thex-deep surface area from which the radiation can be counted and r(h, y, x )  describes 
the in0uence of absorption in the material: 

r ( k  Y, x) : = 9 h  (Kh, Y, x ) ) / w 9  (2) 

with 9,(i) being the intensity of radiation after a path of length i in the material. 
For a homogeneous sample with a random orientation distribution (e, x) = 1 for 

all g E so(3) and x E [0, T]) the last integral in equation (1) equals 4n. Hence, the h 
pole figure Ph 0: Ib/l~adom is given by the expression 

Thii is the generalized form of the so-called fundamental equation. It takes the 
standard form 

,- 

when the material is homogeneous (i.e. F(g, x)) = f(g)). 
In the case of an inhomogeneous sample the problem to be solved is to calculate the 

x-dependent texture function F. The basis for this is equation (3). For a given set of pole 
figures it represents the system of integral equations. 

3. Texture function reproduction 

Asisknown,eveninthesimplest caseofahomogeneoussample thesolutionofequation 
(4) is ambiguous. If the texture function f is expanded into a series of generalized 
spherical harmonics (Fourier series on the rotation group), then the odd part of the 
series has no influence on the pole figures’ shape and therefore can be arbitrarily chosen. 
On the other hand, the range of the possible solutions is bounded by the non-negativity 
of the texture function. This formal condition as well as others of physical character 
allow one inmost cases to obtainsolutionswhichcan beconsideredassatisfying equation 
(4) and the assumed conditions. However, in the case of depth-dependent textures, the 
informationcontainedinafew pole figuresmay be toopoor togive asatisfactory solution 
in all its generality, but it can be adequate if additional assumptions are imposed. 
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To s impw the problem let us assume that the x-dependent texture function can be 
treated as a superposition of Nfunctionsf’ : so(3) --f R,: 

It is assumed that physical reasons allows one to deduce the form of the Ei : R, --f R, 
functionsandthateachoff’hasthepropertiesofatexture function, i.e. it fulfilsadequate 
symmetry conditions. 

It should be mentioned here that the symmetry of an inhomogeneous sample cannot 
be higher than its symmetry when inhomogeneity is neglected. Only the symmetry 
elements with the rotation axis perpendicular to the plane of constant x cannot be 
disturbed by inhomogeneity in depth. However, if the layers are considered as homo- 
geneous, the sample symmetry of the texture functionsf’ can be higher than the real 
symmetry of the whole sample. 

Equation (3) can now be rewritten as 

N 

with 

Thus the problem differs from the standard one (equation (4)) in the number of 
texture functions to be reproduced. 

The principal ambiguity analogous to that of the standard problem occurs also here, 
i.e. the odd parts of Fourier series off functions do not influence the pole figures, but 
no other additional ambiguity of a principal character (i.e. occumng for arbitrary pole 
figures and arbitrary texture functions) does appear. To prove this it is enough to note 
that from equation (6) it follows that 

where Pi  is the pole figure corresponding to thef’ texture function. If the set of Npole 
figures of the same type but measured with different Bragg angles, i.e. different pi 
coefficients (e.g. {ZOO}, {400}, for cubic crystal symmetry) is known, then equation (8) 
can be considered as a system of Nalgebraic linear equations for the values of N P :  pole 
figures. Thus the generalized problem can be reduced to the standard one if only the 
system (8) has an unambiguous solution. This method was applied by Choi et a1 (1979) 
to the determination of pole figures corresponding to different layers in the sample. 
However, it is restricted by the difficulties with the measurement of many different pole 
figures of the same type. 

In most of the lately developed methods of solving the standard problem, it is 
assumed that pole figures and texture functions are piecewise constant and equation (4) 
is reduced to a system of algebraic linear equations. Besides the principal ambiguity 
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-1. Modeltexturebctions: (u)funaionf’desoibingthEsurface texture;(b) function 
f’ describing the interior tcxhue. 

there may appear another ambiguity resulting from the small number of equations. The 
non-negativity condition improves the situation, but it makes the problem non-linear 
and difficult to analyse; therefore, to check the efficiency of the reproduction methods, 
model calculations are necessary. They show that the results are different in individual 
cases but sometimes one can obtain a satisfactory solution even from one pole figure 
(see, e.g., Ruer and Baro 1977, Matthies 1990). 

When equation (6) is treated in a similar way, the number of unknowns increases N 
times and there are doubts about whether a satisfactory solution can be obtained even 
for N = 2. However, in spite of this doubt an appropriate routine has been prepared. In 
fact, it is a modification of the program solving the standard problem and this in turn is 
similar to the methods described, for example, by Imhof (1983), Pawlik (1986) and Ruer 
and Baro (1977). Virtually the routine iteratively solves the system of linear equations 
built on the basis of equation (6). 

4. Tests 

Theresultsofsomemodel testsaregiven below.These testswerecaniedoutonachosen 
exemplary texture. It should be emphasized that some graphs can have an individual 
character, i.e. they can have different shapes for other textures. 

The example was chosen to satisfy the most frequently analysed symmetry 
conditions, i.e. cubic crystal symmetry and orthorhombic symmetry of the layers, and 
the considered texture functions are well known. 

Theusedcoordmatesonso(3) wereEuler anglesdebed accordingtoBunge (1982). 
Calculations were carried out with texture functions and pole figures given at grid of 59 
mesh size. 
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Figure2.Modelpolefigures: (~))efi~mrrespondingtof'texture~~on,obtained 
using equation (4); (b)  pole figures corresponding to fz texture function, obtained using 
equation (4); (c) pole figures treated as experimental, obtained on the basis of equation (8) 
following from equation (6). 

Except for the non-negativity of the texture function the routine does not contain 
any other explicitly formulated conditions. Therefore, when using the program, one 
should be aware of the ambiguity problem. 

In the model the assumed texture changes violently at the depth x = d; above and 
below this level the textures are homogeneous. Equation (5) takes the form 

F k X )  Q H(x)H(d - x)f'(g) + H(x - d)f2(g) (9) 
where H denotes Heaviside's function. The assumed value of $4 is do = 1.3 X m. 
The functions f '  and fZ are taken from the work of Truszkowski et d (1979). Each 
is built of three Gaussian-shaped components (see, e.g., Matthies ef a1 1987). The 
components and their volume fractions are as follows: 

f': {OOl} (110) - 0.46 

f': {llO} (112) - 0.18 
{lll} (110) - 0.33 
{213} (364) - 0.58 

{lll} (112) - 0.21 
{112} (111) - 0.24 
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Figure 3. Texture functions reproduced from pole figures shown in figure 2(c) (after 3W 
iterations). 

Figure 4. Texture functions reproduced from pole figures corresponding to function f 
(%e figure t ( b ) ) .  Comparison with figure I (b )  shows that the method works in case of 
homogeneous samples. The number of iterations was 300. 
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F i r e  5. The quality of reproduction versus the 
sharpness of textures represented by the com- 
ponents half-width after 50 iterations. 

0 00 0 0  Loo Holindth [de91 

All the components (except the test with the results given in figure 5) have the same half- 
widthof21.6". Theassumedmaterial iscopper and theassumed radiationisx-ray copper 
K,. The corresponding absorption coefficient is p = 4.7219 x lo4 m-I and the Bragg 
angles related to the {lll}, {loo}, {llO} and {311} pole figures are 21.67", 25.24", 37.09" 
and 45.00", respectively. The functions is assumed to ben independent; so it does not 
inEuence the pi coefficients. The r-function is defined as r(h,y ,  x )  = exp[ -pZ(h,y,x)] 
with 

@,Y, 4 = N I s i n [ W ) l  co~[cuol)l~ (10) 
where 6 is the Bragg angle and cr is the radial angle on a pole figure. Except for the 
explicitly indicated cases, three pole figures ({lll}, {loo} and {llO} with (YE [O", 80'1 
were used. 

Theideaofthetestsisvelysimp1e:oneconsidersagiventexture (withknown texture 
function) as the really existing texture (figure 1) and then calculates the corresponding 
pole figures (figure 2). These pole figures are treated as experimental and are the basis 
for the texture function reproduction. The result can be compared with the assumed 
texture functions (figures 3 and 4). 

Further, the quality of the reproduced texture functions f: andf: is characterized 
by D := [diff(J',fi) + diffCf2,fS)]/2 with diff(f',f:) := (Sn2)-' J,(,,dg [f'(g) - 
A(g)l. This index does not give information on the details but it does show the global 
difference between the desired 'real' texture and the calculated texture. 

In practice, when model texture functions are unknown, the only known quantity 
characterizing the quality of the texture functions under reproduction is that which 
describes the differences between the experimental pole figures and the pole figures 
calculated from these texture functions. A few different quantities of this type are being 
used. Here the average difference d between the experimental and the calculated pole 
figures at one measuring point is applied. 

It is known that in the standard case the sharpness of the texture affects the quality 
of the reproduction results. To check this in the generalized case a test was carried out 
with nine different (but the same for all components) half-widths. As figure 5 shows, the 
curve has its maximum near the 21.6" point assumed in other tests. The reproduction 
results for sharper and for flatter textures are better. 

Figures 6 and 7 visualize the course of the iteration process. For comparison, anal- 
ogous curves for one texture function reproduction are shown. The latter have a larger 
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Flgurr 7. Difference between model and repro- 
duced t e m r e  functions versus number of iter- 
ations: (a) case of an inhomogeneoussample; (b) 
curvecalculatedforfunctionsf'andf undersep 
arate reproduction according to equation (4). 

Number 01 iterofion* 

FIgure6.Theadjustmentofdculatedandmodel 
pole figures versus number of iterations: (a) case 
of an inhomogeneous sample: (b) standard case 
based on equation (4), where the m e  represents 
the arithmetic average for calculations repro- 
ducingindependently the texture fundons f'and 
I?. 

Figure 8. The results of reproduction from one 
((Ill}), two ((111) and {100)), three ((1111, (1001 
and (1 IO)) and four ((lll}, (1001, (110) and {311}) 
pole figures after 300 iterations. The ranges of 
pole figures were 45" and 80". 

Figure 9. D versus the range of pole figures after 
50 iterations. 

slope and therefore the program separating the textures requires a larger number of 
iterations to achieve results of comparable quality. 

The dependence of D on the amount of information is shown in figures 8 and 9. As 
should be expected, the range of pole figures used strongly influences the quality of the 
results. This follows from the presence of a in equation (10). 

The results for different numbers of pole figures are given in figure 9. The fact that 
for the established range of 80" the convergence for three pole figures is better than for 
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Figure 10. (a) Pole figure adjustment versus S P ~ S P , ,  where do = 1.3 pm corresponds to 
model textures (9), and SP = six was assumed during reproduction. (b) d versus parameter 
% of equation (11) for the model texture built according to equation (9) with SP = do = 
1.3pm. andequation (11) assumed during reproduction. (c) Pole figure adjustment versus 
%J%,, where%, = OSpm-'correspondstomodel textures (ll), and% = 5% was assumed 
during reproduction. (4 d Venus parameter SP of equation (9) for the model texture built 
according to equation (1 1) with B = 30 = 0.5 pm", and equation (9) assumed during 
reproduction. 

four indicates that the fourth pole figure does not add much more information than 
already obtained from the three others. 

In practice, contrary to the model calculations, the functions Iji (describing texture 
changes withx) will usually be unknown. The question arires of whether from the course 
of the reproduction process one can guess how texture depends on depth or at least what 
is the value of the parameters of Ei functions (SI in equation (9)). In other words, if the 
convergence of iteration (as shown by dversus the number of iterations) is the best when 
the &functions used for reproduction are identical with the real functions, i.e. those 
corresponding to the sample. The results of appropriate tests are given in figure lO(a). 
The minimum of the curve appears near the 'real' value of the parameter SP only after a 
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Figurr 11. The influence of enom on the adjust- 
men! of model and calculated pole figures. 

Figure 12. The influence of errors on the cal- 
culated texture functions. 

very large number of iterations. This in turn, as will be shown, is limited because of 
experimental errors. Therefore, the possibility of guessing the value of Ss is bounded. 

The situation is even worse. Let the model be constructed using equation (9), but 
when reproducing texture functions let us assume that 

F ( g . x )  = exp(-*)f'k) + [ I -  exp(-*x)lfk). (11) 

The results (D versus 93) for different iteration numbers are shown in figure 10. Here 
the convergence was better when thereproduction wascarried out with the'true' formula 
(9) (figure lO(u)) than in case of equation (11) (figure 10(b)). However, unfortunateiy 
this is not the case when the role of (9) and (11)  are interchanged; the convergeoce of 
calculations with an assumed 'untrue' function given by (9) (figure 1O(d)) is better than 
with the proper function given by (11) (figure lO(c)). 

All the above tests were camed out using error-free model pole figures. The 
measured pole figures are within the experimental errors. The question is how the errors 
influence the reproduction results? 

The discussed separation method is based on the incompatibility of pole figures. The 
pole figures are considered to be compatible if there exists a texture function from which 
they all can be obtained following equation (4). The limit of the value of d for a large 
number of iterationsissome measure ofthe incompatibility. It isnearzero for compatible 
pole figures and takes higher values for incompatible pole figures. From a formal 
viewpoint, incompatibility is equivalent to discrepancy in the system of linear equations 
which are beingsolved. On theother hand, thesameeffect of incompatibility is produced 
by pole figure errors. Thus the separation method could be error sensitive. 

To check this sensitivity, the model pole figures were disturbed in such a way that 
relativeerrorshadanormaldistributionandtheerror (meanforestablisheda) depended 
on the radial angle of the pole figure (proportional to 1 + 2 x tan a). The changes 
in d and D versus the mean relative error at one 'measurement' point of the pole figure 
are shown in figures 11 and 12. 

When the value of error is high, the increase in the number of iterations does not 
cause a decrease in D, i.e. does not improve the quality of results. However, even in 
such acase, although the details are missing, the main maximacan be properly localized. 
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5. Final remarks 

The main advantage of the method presented is that it is much easier to apply than the 
traditional technique of thinning. It is important also that this is a non-destructive 
method. 

It can be applied to inhomogeneities of different scales; one can investigate thin 
layers using x-rays or thick samples by neutron diffraction. 

A serious limitation is due to the difficulties connected with the determination of the 
&imctions. For a small number of iterations it is impossible to draw conclusions about 
their form from the course of the iteration process. On the other hand, because of 
experimental errors it is not reasonable to increase the number of iterations above a 
certain limit. 
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